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Section: 12

Topological Spaces and Continuous
Functions

Definition:

A topology on a set X is a collection T of subsets of X
having the following properties:

i) d¢andXareint (P, X €1)
ii)  The union of the elements of any sub collection of tis
inT
iii) The intersection of the elements of any finite sub
collection of tisintT
A set X for which a topology T has been specified is
called a Topological spaces.

Definition:

If X is any set the collection of all subsets of X is a
topology on X which is called the discrete topology.

The collection consisting of ¢, X only is also a topology
on X. We say that it is the indiscrete topology (or) trivial
topology.



Definition:

Suppose that tand t’ are two topologies on a given set X.
If T'J1, we say that T is finer than 1, if T properly contains T,
we say that T is strictly finer than t.

We also say that tis coaser than T, or strictly coaser is
these two respective conditions.

We say T is comparable with t’ if either T2t (or) TOU

Section: 13

Basis for a topology

Definition:

If X is a set, a basis for a topology on X is a collection B of
subsets of X called basis elements such that,

i) for each x €X, there is atleast one basis element B
containing x

i) if x belongs to the intersection of two basis elements
B, and B, then there is a basis elements B3eB Such
that x eBsCB1NB,

Definition:

If B satisfies there two conditions then we define a
topology 1t generated by B as follows:



A subset U of X is said to be open in X. (ie) To be an
element of 1) if for each xeU there is a basis element BeB
such that xeB and BCU, t = {UCX/ xeU=> there exists BeB such

that xeBCU}

Now, we prove that the collection t defined above is a

topology.

i)  The empty set ¢PeT, since it satisfies the definining
condition of openness acurously.
Let xeX

Since B is a basis, there is a basis element BeB such
that xeBCX

i) Let{U,}be a collection of members of T
To prove UU,e T

Let xeUU,
xeU, for some a

since U,et and xeU, there is some basis element BeB such
that xeBCU,

ie) xeBCU,CUU,
s UU,et

i) Let Uq, Ua,......... ,U, €T
Toprove: N, Ui et
To prove : The result by induction on n
When n=1, the result is obviously true



n=2, let xeU;NU,
= xeU;and xeU,

since xeU;then there exist B;eB such that xeB,;CU;
since xeU,then there exist B,eB such that xeB,CU,
e XEBlnBZCU]_nUZ

Since B is a basis then there exist B3;eB such that
xeBs;CB1NB,

xe BiNB,CUNU;
s~ UinUset
Assume that the result is true for n-1
s~ UinUan...... NU, €T
Now, U;nU,N........nU, = (U;NU,....... NU,1)N U,
By induction hypothesis, UinUaN.....U 1€ T
By the above part, (UiNnU;N.....U,.1) N U€eT
s~ UinUan.....nU, et
Hence Ni-, Uiet

~ Tis topology on X.

Lemma 13.1



Let X be aset. Let B be a basis for a topology Tt on X.
Then t equals the collection of all unions of elements
of B.

Proof

Given a collection of all elements of B, they are also elements
of T.

Since tis a topology, their unionisin t.
Conversely, let Uet

Since B is a basis for T, for each XeU, then there exists B,eB
such that xeB,CU

~ U= UB,, B«B

~ U equals to the union of elements of B
Lemma 13.2

Let X be a topological space. Suppose that Cis a
collection of open sets of X such that for each open set
U of X and each x in U, there is an element c of C such
that xecCU. Then C is a basis for the topology of X.

Proof

Claim C is a basis

i) let xeX



since X is open by the definition of C, there exists ceC such
that xecCX

i) letc, ceC
let xeciNc,
since ¢; and ¢, are open, ¢1NC; is open
By the definition of ¢, there exists cse¢ such that xecsCciNc,
~ C is a basis
Let T be a given topology on X
Let T’ be the topology generated by C
Claim t=t
Let Uet
Then by definition of C, for each xeU there exists ¢,CU

s U=Ucy

Conversely, let Wet’

s W=Uc,, c,eC

Since c,€C, we have cet for all a
Since T is a topology, Uc,€et

- Wet



Hence t=t" (by 0 &Q)
Lemma 13.3

Let B and B’ be basis for the topologies tand t’
respectively on X. Then the following are equivalent

i) T isfinerthant

ii) for each xeX and each basis element BeB
containing x, there is a basis element B’eB’ such
that xeB’CB

Proof
(ii)=> (i)
To prove : T is finer than t
le) To prove t'0t
Let Uet
Let xeU
Since B is a basis, there exist BeB such that xeBCU

Since by condition (ii), there exists B’eB’ such that
xeB’CBCU

)

* Uet

~ T is finer than .



(i)=> (ii)
For each xeX, there is a basis element BeB containing x
Since B is a basis for a topology t, BEB =>Bet
Since t'Jt, Bet’ and xeB
= There exists B’€B’ such that xeB’CB
Hence (i) and (ii) are equivalent
Definition:
If B is the collection of all open intervals in the real line
le) B={(a,b)/a,beR}

Then the topology generated by B is called the standard
topology on the real line R. Unless specified, R is given the
standard topology.

Definition:

If B” is the collection of all half open intervals of the
form, B’={[a, b)/a <x<b}, then the topology generated by B’
is called the lower limits topology in R. When R is given as
lower limit topology. We denote it by R,.

Definition:

Let k denote the set of all numbers of the form 1/n, n
€Z, and B’ be the collection of all open intervals (a, b).
Along with all sets of the form (a, b)-k. The topology



generated by B” is call the k-topology on R. When R is
given the k-topology is denoted by R,.

Lemma 13.4

The topologies of R, and R, are strictly finer than the
standard topology on R, but are not comparable with
one another

Proof

Let T, T and " be the topologies of R, R, and Ry
respectively.

Claim T is strictly finer than t

ie) ToprovetdT

Let (a, b) be a basis element for T and let xe(a, b)
Then xe[x, b)C (a, b)

Since [ x, b) is a basis element for t/, then by previous
lemma

(ii) T is finer than t
Now , [X, b) is a basis element for T’ contains x

Clearly no basis element of the form (a, b) containing x can
be contained in [x, b)

=~ T is strictly finer than t

Claim: t” is strictly finer than t



Let (a, b) be a basis element of T containing x

Clearly (a, b) itself a basis element for t” contains x and

contained in (a, b)
~ T’ isfinerthant

On the other hand given the basis element B= (-1, 1)-K for
T’ and the point zero of B, there is no open interval that
contains O and liesin B

~ 1" is strictly finer than .
Definition:

A sub basis S for a topology on X is a collection of
subsets of X whose union equals X. The topology
generated by the sub basis S is defined to be the collection
of all unions of finite intersection of elements of S

ie) t=U { N}, si/ si€ S}



Section 14

The order Topology

Definition:

A relation ‘C’ is on a set A is called an order relation
(or) simple order (or) linear order if it has the following
properties;

1. For every x and y in A, for which x #y either x Cy or
y C x (comparability)

2. Fornoxin A, the relation x C x hold (non-
reflectivity)

3.1fxCyoryCzthen xCz( transitivity)

Definition:

Let X be a set having a simple relation < (lessthan)
given an element a and b of X suchthat a<b, there are four
subsets of X that are called the intervals determined by a and
b. They are following

1. (a,b) ={x/a<x<b}
2.[a,b)={x/a<x<b}
3.(a,b]={x/a<x<b}
4.[a,b]={x/a<x<b}

Condition (i) is open, condition (iv) is called closed, condition
(ii) & (iii) are called half open intervals.



Definition:

Let X be a set with a simple order relation. Assume
X has more than one element.

Let B be the collection of all sets of the following
types.

1. All open intervals (a,b) in X.

2. All intervals of the form [ag,b) , where a, the
smallest element ( if any ) of X.

3. All intervals of the form (a,by] , where by is the
largest element ( if any) of X.

The collection B is a basis for a topology on X, which is called
the ordered topology.

Definition:

If X is an ordered set and a is an element of X, there
are four subsets of X that are called the rays determined by a
followings

1.(a,+=)={x/x>a}
2.(-o0,a)={x/x<a}
3.[a,+=)={x/x>a}
4.(-0,a]={x/x<a}

The sets of the first two types are called open rays and the
sets of the last two types are called closed rays.



Section 16

The subspace Topology

Definition:

Let X be a topological space with topology t. If Yis a
subset of X, the collection

Ty={YNU/UET}isatopologyonY, called the
subspace topology.

With this topology Y is called subspace of X, its open sets
consist of all intersection of open sets of X with Y.

Lemma 16.1:

If B is a basis, for the topology of X, then the collection
By={BNY/BEB}is a basis for the subspace topology
onY.

Let UNY be an open setinY, where U is open.
Lety € UNY.
Theny € U.

Since B is a basis for X, there exists a basis element B € B
suchthaty € B C U.

YEBNY CUNY.



Since BNY € By.

By is a basis for a subspace topology on Y.
Lemma 16.2:

Let Y be a subspace of X. If UisopeninY andY is open
in X, then U is open in X.

Since Uis openinY, U=VNY where V is open in X.
Also Y is openin X.
Since V and Y are open in X, then VNY is open in X.

Hence U is openin X.

Theorem 16.3:

If A is a subspace of X and B is a subspace of Y, then the
product topology on AxB is the same as the topology
of AXB inherits as a subspace of XxY.

The general basis element for the product topology on XxY is
UxV , where U is openin X and Vis openin .

~ (UxV) n (AxB) is the general basis element for the subspace
topology on AxB.

Now, (UxV) n (AxB) = (UNA) x (VNB)

Since UNA and VNB are general open setsin A and B
respectively.



Then (UNA) x (VNB) is a general basis element for the
product topology on AxB.

Thus the basis for the subspace topology on AxB and the
product topology on AxB are same.

Hence the two topologies are same.
Definition:

Given an ordered set X. A subset Y of X is said to be convex in
X if for each pair points a<b of Y, the entire interval (a,b) of
points of X lies inYy.

Theorem 16.4:

Let X be an order set in the ordered topology. Let y be
a subset of X, that is convex in X. Then the order
topology on Y is the same as the topology Y inherits as
a subspace of X.

Consider the ray (a,+°=) in X and Y is convex in X.

If a €Y, then (a,+>°)NY={x/x €Y and x > a } which is an
open ray in the ordered set y.

If a € Y, then a is either a lower bound on Y or an upper
bound on Y.

If a is a lower bound ony, (a,+o=) N Y equals all of Y.

If a is an upper bound ony, then (a,+°°)NY is equals to ¢.



Similarly, (-e=,a) is either an open ray of Y or Y or ¢.

Since the set ( a,+o° )NY and ( -e=,a )NY form a subbasis for
this subspace topology on Y.

Since each is open in the ordered topology and ordered
topology contains this subspace topology.

To prove the reverse part
Any open ray of Y equals the intersection of open ray of X

Since the open ray of Y form the subbasis is for the ordered
topology on Y.

The ordered topology on Y equals the subbasis is for the
ordered topology on Y equals the subspace topology of y as a
subspace of X.

Hence the theorem.
Definition:

A map f:X->Y is said to be and open map if for every open set
U of X, the set f(U) is openin Y. ie) If fis an open map, image
every open set U in X under fis openin.



Section: 17

Closed sets and limit points
Definition:

A subset A of a topological space X is said to be
closed if the X-A is open.

Theorem: 17.1

Let X be a topological space. Then the following
conditions hold:

1. @ and X are closed.
2. Arbitrary intersection of closed sets are closed.

3. Finite unions of closed sets are closed.
Solution:
1. Since complement of X and @ are open.
We have X and @ are closed.
2. Let {Aq}ass be the collection of closed sets.
By Demorgan’s law,
X-Ng Ag = Uq (X - Ag)
Since X -A,, for all a£) is open and arbitrary union of open
set is open.
s Ug (X -Ay) is open.

s Ny Agis closed.



3. Let Ag, A, ......... A, be a closed set in X.
Claim: UL, A;is closed.
Now, X-UL, A =N, (X —Ai) (By Demorgan’s law)
Since each X-A; is open in X. NiL,(X — Ai) is open.
That is X-Uj= 4; is open.
* 1 Ais closed
Theorem: 17.2

Let Y be a subspace of X. Then a set Ais closed in Y iff it
equals the intersection of a closed set of X with Y.

Solution:
Let A be a closed setin.
Then Y-AisopeninY. (~Yisasubspace)
~ Y-A=UNY, Where U is open in X.
~ X-Uis closed in X and (X-U)NY = A.
(i)

~ A equals the intersection of a closed set in X with Y.
Conversely,
Let A = CNY, where Cis closed in X.

To prove: Ais closed in Y.



Since Cis closed in X, X-C is open in X.
~ (X-C)NYisopenin.
(X-C)NY = Y-A which is open in X.

~ Aisclosed setiny.

Theorem: 17.3

LetY be a subspace of X. If Aisclosed in Y and Y is closed
in X then A is closed in X.

Solution:
Let A be a closed setin.
A = CNY, where Cis closed in X.

Since Cand Y are closed in X, A is closed in X.

Closed and interior of a set
Definition:

Given a subset A of a topological space X, the
interior of A is defined as the union of all open set contained
inA.

Definition:

The closure of A is the intersection of all closed sets
containing A.

Theorem: 17.4



Let Y be a subspace of X. Let A be a subset of Y. Let A
denote the closure of A in X. Then the closure of Ain'Y
equals ANY.

Solution:
Let B be the closure of Ain Y.
To prove: B = ANY
Clearly, AnYis closed iny. (Bytheorem 17.2)
Since B is the smallest closed set in Y containing A,
We haveBc AnY —— (1)
On the other hand, we know that B is closed in Y.
~ B =CNY, where Cis closed in X.
Since B is the closure of Ain Y, then Cis a closed set
Containing Ain X.
Since A is the smallest closed set containing A, we have
AcC.

.~ ANY c CNY

ANY cB >(2)

From (1) and (2), B = ANY.

Theorem: 17.5



Let A be a subset of the topological space X.

Then (i) xEA iff every open set U containing x intersects
A.

(ii) Supposing the topology of X is given by a basis, then
x€EA iff every basis element B containing x intersects A.

Solution:

(i) We shall prove that x & A iff there exists an open set U
containing x that does not intersects A.

Let x & A.

Then the set U = X-A is an open set containing x that does
not intersect A.

Conversely,
Let U be an open set containing x that does not intersect A
~ X-U is a closed set containing A.
But A is the smallest closed set containing A.
. Ac X-U
Since x & X-U, x ¢ A.
(i) Letx €A
To prove: Every basis element B containing x intersects A.

We know that, Every basis element is open.



=~ Every basis element B containing x also intersects A.
Conversely,

Every basis element B containing x intersects A, so does
every open set U containing x, because U contains a basis
element that contains x.

By (i), x € A.

Theorem: 17.6

Let A be a subset of the topological space X. Let A’ be
the set of all limit points of A. Then A = AUA’.

Solution:
Let x € AUA’
= XEA (or) x€ A’
Ifx €A thenx€A (vAcCA)
If x € A’, then every neighbourhood of x intersects A-{x}.
Then every neighbourhood of x intersects A.
~“XEA (v Bytheorem17.5)

s X E AUA’

AUA’ C A > (1)

If x € A then trivially, x € AUA’



If x € A, then every neighbourhood of x intersects A-{x}.
(+ x € A).
Then x is a limit point of A.
“XEA
. X € AUA’
~ ACAUAN —*(2)

From (1) and (2), A = AUA’.

Corollary:

A subset of a topological space is closed iff it contains
all its limit points.

Solution:
Let A be a closed subset of a topological space.
We know that A = AUA’ (- Ais closed = A=A)
~ACA
=~ A contains all its limit points.
Conversely,
Suppose A’ C A
AUA’ € AUA=A

AUA’ C A



ACA, also we know that ACA.
~A=A

~ Ais closed.

Hausdorff Space

Definition:
A topological space X is called a hausdorff space if for each
pair (x1, Xz) of distinct points of X, there exists
neighbourhoods U; and U, of x; and x, respectively that are
disjoint.
Theorem: 17.8
Every finite point set in a hausdorff space X is closed.
Solution:
It is enough to prove that every one point set {xo} is closed.
That is, to prove {xo} = {Xo}
Let x be a point of X such that x#xg

Since X is a hausdorff space, there exists disjoint
neighbourhoods U and V of x and xo respectively.

U is a neighbourhood of x that does not intersect {xo}

X E {x‘o} (~ Theorem: 17.5)



Hence the closure of the set {xo} is {xo} itself.
That is, {Xo} = {Xo}

~ {Xo} is closed.

Theorem: 17.9

Let X be a space satisfying the T;- axiom. Let A be a
subset of X. Then the Point x is a limit point of A iff
every neighbourhood of x contains infinitely many
points of A.

Solution:
Let x be a limit point of A.
To prove: Every neighbourhood of x contains
Infinitely many points of A.

Suppose, there exists a neighbourhood U of x intersects A
in only finitely many points.

We have UNA = finite set.

UNA — {x} = {xq, Xo, ....... , Xn} (say)

Since X is a Ti-space, {X1, X2,....... Xn} is closed in X.
& X-{X1, X2, veeeeeeXn} is OpeN in X.

s UN{X-{X1, X2, ......Xn}} is also a neighbourhood of x which
does not intersects A-{x}.



That is, [UN{X-{X, X2, ... Xa ] N A={x} = ¢

~ X is not a limit point of A, which is a contradiction to our
assumption.

Hence every neighbourhood of x contains infinitely many
points of A.

Conversely,

Suppose every neighbourhood of x contains infinitely
many points of A.

. Every neighbourhood of x intersects A-{x}.
~ X is a limit point of A.

Theorem: 17.10

If X is a hausdorff space, then a sequence of points of X
converges to almost one point x.

Solution:
Given that X is a hausdorff space.
Let {x,} be a sequence of points in X.
Let x, y be a two points of X such that x+y.
Let {x,} converges to x.
To prove: {x,} does not converges to x.

Since x#y, and X is a hausdorff space there exists disjoint
neighbourhoods U and V of x and y respectively.



Since x is a limit point of U and U is a neighbourhood of x,
U contains {x,} for all but finitely many values of n.

Hence the neighbourhood V of y cannot contains infinitely
many points of {x,}.

. {x,} does not converges toy.
Theorem: 17.11
Every simply ordered set is a hausdorff space in the
Order topology. The product of two hausdorff spaces is
A hausdorff space. A subspace of a hausdorff is a

Hausdorff space.
Solution:
Let X, Y be two hausdorff spaces.
Claim: X x Y is a hausdorff space.
Let x; x yzand X2 Xy, € X x Y such that x; x y1 # X2 X y2
Case (i)
Let x1# x; and y1#Ys.
Then there exists neighbourhoods U; and U,, V; and V; of
(X1, X2) and (y1, y2) respectively such that Uy N U, =@ and
VinV,=0.

Then (U; x V1) is a neighbourhood of x; x y;and (U, x V,) is a



Neighbourhood of x; xy,.
(U1 x V1) N (U x V,) = (UiNUy) x (V1N V,) = 0.
Case (ii)
Let x; =X, =X, and y; # ya.
Then there exists a neighbourhood U and V of y; and y,
respectively such that UNV = @.
Then X x U is a neighbourhood of x; xy; and Xx V is a
Neighbourhood of x; x vys.
(Xx U) N (XxV)=(XNX)x (UNV)
=Xx0
= Q.
Case (iii)
Let X1 # Xz, Y1=Y2=Y
Since x1#Xx; there exists a neighbourhood U and V of x; and
X, respectively such that Un V = @.
Then U x Y is a neighbourhood of x; xy;and Vx Yis a
neighbourhood of x, x y,.
Now, (U x Y)N(V xY)=(UNV) x (Y NY)

=Q0xY



=0
~. The product of two hausdorff space is again a hausdorff
Space.
Let Y be a subspace of a hausdorff space.
Let y;, y2€Y and y1#y;
Since Y is a subspace of X, y3, y2 € X and y;#ys.
Since X is a husdorff space, there exists a neighbourhoods
U and V of y; and y, in X respectively such that UNV = @.
Then UNY is a open set of y; in Y and VNY is an open set of
Y,inY.
Now,
(uny) n (vny) = (Unv) n (Yny)
=0NnY
=0

Hence subspace of a hausdorff space is a hausdorff space.



