
UNIT – I 

Section: 12 

Topological Spaces and Continuous 

Functions 

Definition: 

     A topology on a set X is a collection τ of subsets of X 

having the following properties: 

i) ɸ and X are in τ  (ɸ, X ϵτ) 

ii) The union of the elements of any sub collection of  τ is 

in τ 

iii) The intersection of the elements of  any finite sub 

collection of  τ is in τ 

   A set X for which a topology τ has been specified is 

called a Topological spaces. 

Definition: 

         If X is any set the collection of all subsets of X is a 

topology on X which is called the discrete topology. 

        The collection consisting of ɸ, X only is also a topology 

on X.  We say that it is the indiscrete topology (or) trivial 

topology. 



Definition: 

       Suppose that τ and τ’ are two topologies on a given set X.  

If τ’Ɔτ, we say that τ’ is finer than τ, if τ’ properly contains τ, 

we say that τ’ is strictly finer than τ. 

       We also say that τ is coaser than τ’, or strictly coaser is 

these two respective conditions. 

       We say τ is comparable with τ’ if either τ’Ɔτ (or) τϽτ’ 

Section: 13 

Basis for a topology 

Definition: 

      If X is a set, a basis for a topology on X is a collection  Ɓ of 

subsets of X  called basis elements such that , 

i) for each x ϵX , there is atleast one basis element  Ɓ 

containing  x 

ii) if x belongs to the intersection of two basis elements 

В₁ and B₂ then there is a basis elements B₃ϵƁ Such 

that x ϵB₃ϹB₁∩B₂ 

Definition: 

     If Ɓ satisfies there two conditions then we define a 

topology τ generated by Ɓ as follows: 



.                A subset U of X is said to be open in X. ( ie) To be an 

element of τ) if for each xϵU  there is a basis element BϵƁ 

such that xϵB and BϹU, τ = {UϹX ⁄ xϵU=> there exists BϵƁ such 

that xϵВϹU} 

  Now, we prove that the collection τ defined above is a 

topology. 

i) The empty set ɸϵτ, since it satisfies the definining 

condition of openness acurously. 

      Let xϵX 

              Since Ɓ is a basis, there is a basis element ВϵƁ such 

that xϵВϹX 

ii) Let {Uₐ} be a collection of members of τ 

To prove UUₐϵ τ 

Let xϵUUₐ 

xϵUₐ for some ɑ 

since  Uₐϵτ and xϵUₐ there is some basis element BϵƁ such 

that xϵBϹUₐ 

      ie) xϵBϹUₐϹUUₐ 

          UUₐϵτ 

iii) Let U₁, U₂,……… ,Un ϵτ 

To prove : ⋂    
    ϵ τ 

To prove :  The result by induction on n 

When n=1, the result is obviously true  



n=2, let xϵU1∩U2 

 xϵU1and xϵU2 

      since  xϵU1 then there exist B1ϵƁ such that xϵB1ϹU1 

        since  xϵU2 then there exist B2ϵƁ such that xϵB2ϹU2 

  xϵB1∩B2ϹU1∩U2 

     Since Ɓ is a basis then there exist B3ϵƁ such that 

xϵB3ϹB₁∩B₂ 

     xϵ B₁∩B₂ϹU₁∩U₂ 

        U₁∩U₂ϵ τ 

   Assume that the result is true for n-1 

     U₁∩U₂∩……∩Un-1ϵτ 

  Now, U₁∩U₂∩……..∩Un= (U₁∩U₂.......∩Un-1)∩ Un 

  By induction hypothesis, U₁∩U₂∩……Un-1ϵ τ 

  By the above part, (U₁∩U₂∩…..Un-1) ∩ Unϵτ 

     U₁∩U₂∩…..∩Unϵτ 

  Hence  ⋂    
   ϵτ 

  τ is topology on X. 

Lemma 13.1  



Let  X be a set.  Let Ɓ be a basis for a topology τ on X. 

Then τ equals the collection of all unions of elements 

of Ɓ. 

Proof 

Given a collection of all elements of Ɓ, they are also elements 

of τ. 

Since τ is a topology, their union is in τ. 

Conversely, let Uϵτ  

Since Ɓ is a basis for τ, for each XϵU, then there exists BxϵƁ 

such that xϵBxϹU 

  U= UBx,  BxϵƁ 

  U equals to the union of elements of Ɓ 

Lemma  13.2 

Let X be a topological space.  Suppose that Ҫ is a 

collection of open sets of X such that for each open set  

U of X and each x  in U, there is an element c of Ҫ such 

that xϵcϹU.  Then Ҫ is a basis for the topology of X.                 

Proof 

Claim Ҫ  is a basis 

i) let xϵX 



since X is open by the definition of Ҫ, there exists cϵҪ such 

that xϵcCX 

ii) let c₁, c₂ϵҪ 

let xϵc₁∩c₂ 

since c₁ and c₂ are open, c₁∩c₂ is open  

By the definition of ς, there exists c₃ϵς such that xϵc₃Cc₁∩c₂ 

  Ҫ  is a basis 

Let τ be a given topology on X  

Let τ’ be the topology generated by Ҫ 

Claim   τ=τ’ 

Let Uϵτ 

Then by definition of Ҫ, for each xϵU there exists cxϹU 

  U=Ucx 

  Uϵτ’ 

  τCτ’-----------❶ 

Conversely, let Wϵτ’ 

  W=Ucₐ,  cₐϵҪ 

Since cₐϵҪ, we have cₐϵτ for all ɑ 

Since τ is a topology, Ucₐϵτ 

  Wϵτ 



   τ’Cτ-----------❷ 

Hence τ=τ’      (by ❶ &❷) 

Lemma 13.3 

Let Ɓ and Ɓ’ be basis for the topologies  τ and τ’ 

respectively on X.  Then the following are equivalent 

i) τ’ is finer than τ 

ii) for each xϵX and each basis element BϵƁ 

containing x, there is a basis element B’ϵƁ’ such 

that xϵƁ’CB 

Proof 

(ii)=> (i) 

To prove : τ’ is finer than τ 

  Ie)  To prove τ’Ͻτ 

Let Uϵτ 

Let xϵU 

Since Ɓ is a basis, there exist BϵƁ such that xϵBCU 

Since by condition (ii), there exists B’ϵƁ’ such that 

xϵƁ’ϹBϹU 

   Uϵτ’ 

   τ’ is finer than τ. 



(i)=> (ii) 

For each xϵX, there is a basis element BϵƁ containing  x 

Since Ɓ is a basis for a topology τ,  BϵƁ =>Bϵτ 

Since τ’Ͻτ, Bϵτ’ and xϵB 

  There exists B’ϵƁ’ such that xϵB’ϹB 

Hence (i) and (ii) are equivalent 

Definition: 

     If Ɓ is the collection of all open intervals in the real line 

               Ie)  Ɓ= { (a,b)/a,bϵR} 

Then the topology generated by Ɓ is called the standard 

topology on the real line R.  Unless specified, R is given the 

standard topology. 

Definition: 

     If Ɓ’ is the collection of all half open intervals of the 

form, Ɓ’={*a, b)/a ≤x<b}, then the topology generated by Ɓ’ 

is called the lower limits topology in R.  When R is given as 

lower limit topology.  We denote it by Rl. 

Definition: 

     Let k denote the set of all numbers of the form 1/n , n 

ϵZ+ and Ɓ’ be the collection of all open intervals (a, b).  

Along with all sets of the form (a, b)-k.  The topology 



generated by Ɓ” is call the k-topology on R.  When R is 

given the k-topology is denoted by Rk. 

Lemma 13.4  

The topologies of Rl  and Rk  are strictly finer than the 

standard topology on R, but are not comparable with 

one another 

Proof 

Let τ, τ’ and τ” be the topologies of R, Rl and Rk 

respectively. 

Claim  τ’ is strictly finer than τ 

ie) To prove τ’Ͻ τ 

Let (a, b) be a basis element for τ and let xϵ(a, b) 

Then xϵ[x, b)C (a, b) 

Since [ x, b) is a basis element for τ’, then by previous 

lemma  

(ii) τ’ is finer than τ 

Now , [x, b) is a basis element for τ’ contains x 

Clearly no basis element of the form (a, b) containing x can 

be contained in [x, b) 

  τ’ is strictly finer than τ 

Claim: τ” is strictly finer than τ 



Let   (a, b) be a basis element of τ containing  x 

Clearly (a, b) itself a basis element for τ” contains x and 

contained in (a, b) 

   τ” is finer than τ 

On the other hand given the basis element B= (-1, 1)-K for 

τ” and the point zero of B, there is no open interval that 

contains 0 and lies in B 

   τ” is strictly finer than τ. 

Definition: 

     A sub basis Ș for a topology on X is a collection of 

subsets of X whose union equals X.  The topology 

generated by the sub basis Ș is defined to be the collection 

of all unions of finite intersection of elements of Ș 

        ie) τ= U { ⋂    
   / siϵ Ș} 

 

 

 

      

 



Section 14 

The order Topology 

Definition: 

   A relation ‘Ϲ’ is on a set A is called an order relation 

(or) simple order (or) linear order if it has the following 

properties; 

1. For every x and y in A, for which x ≠ y either x Ϲ y or    

y Ϲ x (comparability) 

2. For no x in A , the relation x Ϲ x hold (non-

reflectivity) 

3. If x Ϲ y or y Ϲ z then x Ϲ z ( transitivity) 

Definition: 

  Let X be a set having a simple relation < (lessthan) 

given an element a and b of X suchthat a<b , there are four 

subsets of X that are called the intervals determined by a and 

b. They are following  

1. (a,b) = { x / a < x < b} 

2. *a,b) = , x / a ≤ x < b- 

3. (a,b+ = , x / a < x ≤ b- 

4. *a,b+ = , x / a ≤ x ≤ b- 

Condition (i) is open, condition (iv) is called closed, condition 

(ii) & (iii) are called half open intervals. 



 

Definition: 

  Let X be a set with a simple order relation. Assume 

X has more than one element. 

  Let Ɓ be the collection of all sets of the following 

types. 

1. All open intervals (a,b) in X. 

2. All intervals of the form [a0,b) , where a0 the 

smallest element ( if any ) of X. 

3. All intervals of the form (a,b0] , where b0 is the 

largest element ( if any) of X. 

The collection Ɓ is a basis for a topology on X, which is called 

the ordered topology. 

Definition: 

  If X is an ordered set and a is an element of X, there 

are four subsets of X that are called the rays determined by a 

followings 

1. ( a, +∞ ) = , x / x > a - 

2. ( -∞, a ) = , x / x < a - 

3. * a, +∞ ) = , x / x ≥ a - 

4. ( -∞, a + = ,x / x ≤ a - 

The sets of the first two types are called open rays and the 

sets of the last two types are called closed rays. 



     

Section 16 

   The subspace Topology  

Definition: 

  Let X be a topological space with topology τ. If Y is a 

subset of X, the collection  

 τ Y = , Y ∩ U / U Є τ - is a topology on Y, called the 

subspace topology. 

With this topology Y is called subspace of X, its open sets 

consist of all intersection of open sets of X with Y. 

Lemma 16.1: 

If Ɓ is a basis, for the topology of X, then the collection 

Ɓ Y = , B∩Y / B Є Ɓ - is a basis for the subspace topology 

on Y. 

 Let U∩Y be an open set in Y, where U is open.  

Let y Є U∩Y.  

Then y Є U. 

Since Ɓ is a basis for X, there exists a basis element B Є Ɓ 

suchthat y Є B Ϲ U. 

Y Є B∩Y Ϲ U∩Y. 



Since B∩Y Є ƁY. 

ƁY is a basis for a subspace topology on Y. 

Lemma 16.2: 

Let Y be a subspace of X. If U is open in Y and Y is open 

in X, then U is open in X. 

Since U is open in Y, U=V∩Y where V is open in X. 

Also Y is open in X. 

Since V and Y are open in X, then V∩Y is open in X. 

Hence U is open in X. 

Theorem 16.3: 

If A is a subspace of X and B is a subspace of Y, then the 

product  topology on AxB is the same as the topology 

of AXB inherits as a subspace of XxY. 

The general basis element for the product topology on XxY is 

UxV , where U is open in X and V is open in Y. 

∴ (UxV) ∩ (AxB) is the general basis element for the subspace 

topology on AxB. 

Now, (UxV) ∩ (AxB) = (U∩A) x (V∩B) 

Since U∩A and V∩B are general open sets in A and B 

respectively. 



Then (U∩A) x (V∩B) is a general basis element for the 

product topology on AxB. 

 Thus the basis for the subspace topology on AxB and the 

product topology on AxB are same.  

Hence the two topologies are same. 

Definition: 

Given an ordered set X. A subset Y of X is said to be convex in 

X if for each pair points a<b of Y, the entire interval (a,b) of 

points of X lies in y. 

Theorem 16.4: 

Let X be an order set in the ordered topology. Let y be 

a subset of X, that is convex  in X. Then the order 

topology on Y is the same as the topology Y inherits as 

a subspace of X. 

Consider the ray (a,+∞) in X and Y is convex in X. 

If a Є Y, then (a,+∞)∩Y = , x / x Є Y and x > a - which is an 

open ray in the ordered set y. 

If a ∉ Y, then a is either a lower bound on Y or an upper 

bound on Y. 

If a is a lower bound on y, (a,+∞) ∩ Y equals all of Y. 

If a is an upper bound on y, then (a,+∞)∩Y is equals to ф. 



Similarly, (-∞,a) is either an open ray of Y or Y or ф. 

Since the set ( a,+∞ )∩Y and ( -∞,a )∩Y form a subbasis for 

this subspace topology on Y. 

Since each is open in the ordered topology and ordered 

topology contains this subspace topology. 

To prove the reverse part 

Any open ray of Y equals the intersection of open ray of X  

Since the open ray of Y form the subbasis is for the ordered 

topology on Y. 

The ordered topology on Y equals the subbasis is for the 

ordered topology on Y equals the subspace topology of y as a 

subspace of X. 

Hence the theorem. 

Definition: 

A map f:X→Y is said to be and open map if for every open set 

U of X, the set f(U) is open in Y. ie) If f is an open map, image 

every open set U in X under f is open in Y. 

 



 

Section: 17 

Closed sets and limit points 

Definition: 

                  A subset A of a topological space X is said to be 

closed if the X-A is open. 

Theorem: 17.1 

Let X be a topological space. Then the following 

conditions hold: 

1. Ǿ and X are closed. 

2. Arbitrary intersection of closed sets are closed. 

3. Finite unions of closed sets are closed. 

Solution: 

  1. Since complement of X and Ǿ are open. 

        We have X and Ǿ are closed. 

  2. Let {Aα}α£J be the collection of closed sets. 

       By Demorgan’s law, 

              X- ∩α Aα = ∪α (X - Aα) 

        Since X -Aα, for all α£J is open and arbitrary union of open  

        set is open. 

             ∴  ∪α (X -Aα) is open. 

              ∴ ∩α Aα is closed. 



 

   3. Let A1, A2, ……… An be a closed set in X. 

        Claim: ⋃ 𝐴𝑛
𝑖=1 i is closed.  

        Now, X-⋃ 𝐴𝑛
𝑖=1 i  = ⋂ (𝑋 − 𝐴𝑖)𝑛

𝑖=1       (By Demorgan’s law) 

         Since each X-Ai is open in X. ⋂ (𝑋 − 𝐴𝑖)𝑛
𝑖=1  is open. 

         That is X-⋃ 𝐴𝑛
𝑖=1 i is open. 

                     ∴ ⋃ 𝐴𝑛
𝑖=1 I is closed 

Theorem: 17.2 

Let Y be a subspace of X. Then a set A is closed in Y iff it 

equals the intersection of a closed set of X with Y. 

Solution: 

      Let A be a closed set in Y. 

      Then Y-A is open in Y.      (∵ Y is a subspace) 

      ∴ Y-A = U∩Y, Where U is open in X. 

      ∴ X-U is closed in X and (X-U)∩Y = A. 

(i)                                              (ii)  

 

  

      

     ∴ A equals the intersection of a closed set in X with Y. 

      Conversely, 

       Let A = C∩Y, where C is closed in X. 

  To prove: A is closed in Y. 

          U 
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  Since C is closed in X, X-C is open in X. 

  ∴ (X-C)∩Y is open in Y. 

   (X-C)∩Y = Y-A which is open in X. 

   ∴ A is closed set in y. 

 

Theorem: 17.3 

Let Y be a subspace of X. If A is closed in Y and Y is closed 

in X then A is closed in X. 

Solution: 

     Let A be a closed set in Y. 

     A = C∩Y, where C is closed in X. 

     Since C and Y are closed in X, A is closed in X.    

 

Closed and interior of a set 

Definition: 

                  Given a subset A of a topological space X, the 

interior of A is defined as the union of all open set contained 

in A.  

Definition: 

                  The closure of A is the intersection of all closed sets 

containing A. 

Theorem: 17.4 



 

Let Y be a subspace of X. Let A be a subset of Y. Let Ᾱ 

denote the closure of A in X. Then the closure of A in Y 

equals Ᾱ∩Y. 

Solution: 

     Let B be the closure of A in Y. 

     To prove: B = Ᾱ∩Y 

     Clearly, Ᾱ∩Y is closed in y.     (By theorem 17.2) 

     Since B is the smallest closed set in Y containing A,  

     We have B ⊂ Ᾱ∩Y                          (1) 

     On the other hand, we know that B is closed in Y.  

     ∴ B = C∩Y, where C is closed in X. 

     Since B is the closure of A in Y, then C is a closed set  

     Containing A in X. 

     Since Ᾱ is the smallest closed set containing A, we have 

     Ᾱ ⊂ C. 

     ∴ Ᾱ∩Y ⊂ C∩Y 

        Ᾱ∩ 𝑌 ⊂ B                         (2) 

     From (1) and (2), B = Ᾱ∩Y. 

 

Theorem: 17.5 



 

Let A be a subset of the topological space X.  

Then (i) x∈Ᾱ iff every open set U containing x intersects 

A. 

(ii) Supposing the topology of X is given by a basis, then 

x∈Ᾱ iff every basis element B containing x intersects A.  

Solution: 

(i)   We shall prove that x ∉ Ᾱ iff there exists an open set U 

containing x that does not intersects A. 

     Let x ∉ Ᾱ. 

     Then the set U = X-Ᾱ is an open set containing x that does 

not intersect A. 

     Conversely, 

     Let U be an open set containing x that does not intersect A 

     ∴ X-U is a closed set containing A. 

     But Ᾱ is the smallest closed set containing A. 

     ∴ Ᾱ ⊂ X-U  

     Since x ∉ X-U, x ∉ Ᾱ. 

(ii)  Let x ∈ Ᾱ  

     To prove: Every basis element B containing x intersects A. 

     We know that, Every basis element is open. 



 

     ∴ Every basis element B containing x also intersects A. 

     Conversely, 

     Every basis element B containing x intersects A, so does 

every open set U containing x, because U contains a basis 

element that contains x. 

     By (i), x ∈ Ᾱ. 

 

Theorem: 17.6  

Let A be a subset of the topological space X. Let A’ be 

the set of all limit points of A. Then Ᾱ = A∪A’. 

Solution: 

     Let x ∈ A∪A’ 

     ⇒ x ∈ A  (or) x ∈ A’ 

     If x ∈ A, then x ∈ Ᾱ    (∵ A ⊂ Ᾱ ) 

     If x ∈ A’, then every neighbourhood of x intersects A-{x}. 

     Then every neighbourhood of x intersects A. 

     ∴ x ∈ Ᾱ      (∵ By theorem 17.5 ) 

     ∴ x ∈ A∪A’ 

     A∪A’ ⊂ Ᾱ                            (1) 

     If x ∈ A then trivially, x ∈ A∪A’ 



 

     If x ∉ A, then every neighbourhood of x intersects A-{x}. 

     (∵ x ∈ Ᾱ). 

     Then x is a limit point of A. 

      ∴  x ∈ A’ 

     ∴  x ∈ A∪A’ 

     ∴  Ᾱ ⊂ A∪A’                     (2) 

     From (1) and (2), Ᾱ = A∪A’. 

 

Corollary: 

A subset of a topological space is closed iff it contains 

all its limit points. 

Solution:  

     Let A be a closed subset of a topological space. 

     We know that Ᾱ = A∪A’ (∵ A is closed ⇒ A=Ᾱ) 

     ∴ A’ ⊂ A  

     ∴ A contains all its limit points. 

     Conversely, 

      Suppose A’ ⊂ A 

                 A∪A’ ⊂  A∪A = A 

               A∪A’ ⊂ A 



 

                Ᾱ⊂A, also we know that A⊂Ᾱ. 

                ∴ A = Ᾱ 

                 ∴ A is closed. 

 

Hausdorff Space 

Definition: 

A topological space X is called a hausdorff space if for each 

pair (x1, x2) of distinct points of X, there exists 

neighbourhoods U1 and U2 of x1 and x2 respectively that are 

disjoint. 

Theorem: 17.8 

Every finite point set in a hausdorff space X is closed. 

Solution: 

     It is enough to prove that every one point set {x0} is closed. 

     That is, to prove {x0} = {x0} 

     Let x be a point of X such that x≠x0  

     Since X is a hausdorff space, there exists disjoint 

neighbourhoods U and V of x and x0 respectively. 

     U is a neighbourhood of x that does not intersect {x0} 

     ∴  x ∉ {x0}     (∵ Theorem: 17.5) 



 

     Hence the closure of the set {x0} is {x0} itself. 

     That is, {x0} = {x0}  

     ∴ {x0} is closed. 

 

Theorem: 17.9 

Let X be a space satisfying the T1- axiom. Let A be a 

subset of X. Then the Point x is a limit point of A iff 

every neighbourhood of x contains infinitely many 

points of A.  

Solution: 

     Let x be a limit point of A. 

     To prove: Every neighbourhood of x contains  

                       Infinitely many points of A. 

    Suppose, there exists a neighbourhood U of x intersects A 

in only finitely many points. 

     We have U∩A = finite set. 

     U∩A – {x} = {x1, x2, ……., xn}  (say) 

     Since X is a T1-space, {x1, x2,…….xn} is closed in X. 

     ∴ X-{x1, x2, ……..xn} is open in X. 

     ∴ U∩{X-{x1, x2, ……xn}} is also a neighbourhood of x which 

does not intersects A-{x}.  



 

     That is, [U∩{X-{x1, x2, ….. xn}}] ∩ A – {x} = 𝜙  

     ∴ x is not a limit point of A, which is a contradiction to our 

assumption. 

     Hence every neighbourhood of x contains infinitely many 

points of A.  

Conversely, 

     Suppose every neighbourhood of x contains infinitely 

many points of A. 

     ∴ Every neighbourhood of x intersects A-{x}. 

     ∴ x is a limit point of A. 

Theorem: 17.10 

If X is a hausdorff space, then a sequence of points of X 

converges to almost one point x. 

Solution: 

    Given that X is a hausdorff space.  

     Let {xn} be a sequence of points in X. 

     Let x, y be a two points of X such that x≠y. 

     Let {xn} converges to x. 

     To prove: {xn} does not converges to x. 

     Since x≠y, and X is a hausdorff space there exists disjoint 

neighbourhoods U and V of x and y respectively. 



 

     Since x is a limit point of U and U is a neighbourhood of x, 

U contains {xn} for all but finitely many values of n. 

     Hence the neighbourhood V of y cannot contains infinitely 

many points of {xn}. 

     ∴ {xn} does not converges to y. 

Theorem: 17.11 

Every simply ordered set is a hausdorff space in the  

Order topology. The product of two hausdorff spaces is  

A hausdorff space. A subspace of a hausdorff is a  

Hausdorff space. 

Solution: 

     Let X, Y be two hausdorff spaces.  

     Claim: X x Y is a hausdorff space. 

     Let x1 x y1 and x2 x y2 ∈ X x Y such that x1 x y1 ≠ x2 x y2 

Case (i) 

     Let x1≠ x2 and y1≠y2. 

     Then there exists neighbourhoods U1 and U2, V1 and V2 of  

     (x1, x2) and (y1, y2) respectively such that U1 ∩ U2 = ∅ and  

     V1 ∩ V2 = ∅. 

     Then (U1 x V1) is a neighbourhood of x1 x y1 and (U2 x V2) is a 



 

     Neighbourhood of x2 x y2. 

     (U1 x V1) ∩ (U2 x V2) = (U1∩U2) x (V1∩ V2) = ∅. 

Case (ii)  

     Let x1 = x2 = x, and y1 ≠ y2. 

     Then there exists a neighbourhood U and V of y1 and y2  

     respectively such that U∩V = ∅. 

     Then X x U is a neighbourhood of x1 x y1 and X x V is a  

     Neighbourhood of x2 x y2. 

     (X x U) ∩ (X x V) = (X∩X) x (U∩V) 

                                  = X x ∅ 

                                   = ∅. 

Case (iii) 

     Let x1 ≠ x2, y1=y2=y 

     Since x1≠x2 there exists a neighbourhood U and V of x1 and  

      x2 respectively such that U∩ V = ∅. 

      Then U x Y is a neighbourhood of x1 x y1 and V x Y is a  

      neighbourhood of x2 x y2. 

     Now, (U x Y)∩(V x Y) = (U∩V) x (Y ∩Y)  

                                           = ∅ x Y  



 

                                           = ∅ 

    ∴ The product of two hausdorff space is again a hausdorff   

     Space. 

     Let Y be a subspace of a hausdorff space. 

     Let y1, y2 ∈ Y and y1≠y2 

     Since Y is a subspace of X, y1, y2 ∈ X and y1≠y2. 

     Since X is a husdorff space, there exists a neighbourhoods 

     U and V of y1 and y2 in X respectively such that U∩V = ∅. 

     Then U∩Y is a open set of y1 in Y and V∩Y is an open set of   

     Y2 in Y. 

     Now, 

            (U∩Y) ∩ (V∩Y) = (U∩V) ∩ (Y∩Y) 

                                        = ∅ ∩ Y 

                                        = ∅ 

      Hence subspace of a hausdorff space is a hausdorff space. 

      

   

 

 


